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Outgoing Chairman's Message

In 1992, I proposed a long term corrosion inspection plan for orbiter skin under tile. During a

discussion of the proposal, the orbiter management team asked a number of interesting questions.
How do we determine where hidden corrosion may exist? How do we know corrosion doesn't

exist in areas that aren't inspected? How are the various orbiter corrosion prevention systems

holding up? What new corrosion prevention systems should be implemented? When is corrosion

a repair problem and when is it simply a nuisance? How can corrosion maintenance costs be

reduced with no impact to orbiter safety? This is only a partial list. Some of these questions had

been previously addressed for individual subsystems; however, an integrated vehicle assessment

had never been performed.

The Corrosion Control Review Board was proposed a few months later as a mechanism for

answering questions such as those indicated above. Our first effort involved producing a list of all

active orbiter corrosion. This list is now maintained continuously and serves as a single point of
reference with respect to corrosion for orbiter management. Our second major effort was the

generation of this report, which describes orbiter corrosion issues from historical perspective.

Future reports will contain specific recommendations for long term orbiter corrosion activities.

I believe the Corrosion Control Review Board has been a success. Using existing level-of-effort

labor resources and no supplemental funding, we have significantly enhanced capabilities for

reporting, tracking, and resolving orbiter corrosion issues. I have enjoyed serving as chairman of
the Corrosion Control Review Board and I have developed a high level of confidence in the

capabilities and dedication of the civil service and contractor personnel who serve as

boardmembers. I am confident that this board will experience even greater appreciation in the

years to come.

Charles Salkowski

Chairman, Orbiter Corrosion Control Review Board, 1993-1994
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Incoming Chairman's Message

On behalf of past and current Corrosion Control Review Board (CCRB) members, I would like to

express the board's sincere appreciation to the outgoing chairman, Mr. Charles Salkowski. The

CCRB was formed as a direct result of his efforts, and the leadership he provided during his tenure

has been instrumental to the development of the CCRB's role as a valuable technical and

programmatic resource in support of the Orbiter Project.

Several areas of activity initiated by Mr. Salkowski, such as the CCRB Corrosion Database

project, have been enthusiastically received, and will continue to be supported to meet the evolving

needs of the aging orbiter fleet. Support for these activities and for the board's charter

responsibilities for structural and subsystem corrosion will provide the basic framework for the

CCRB in 1995, and this core effort will ensure operational continuity of the board.

In addition, during 1995 the CCRB will begin to explore more proactive approaches to long-term

corrosion protection. The board, in conjunction with its contacts in the military and civilian

aerospace communities, will expand its efforts to identify new and/or advanced corrosion

protection technologies which have potential applicability to the orbiter fleet. The CCRB will
advocate and initiate testing and evaluation of these technologies with a maximum utilization of

level-of-effort resources, and establish a collective expertise in new and state-of-art methods of

corrosion protection.

The comprehensive knowledge of corrosion protection technology will be applied to the

development of improved corrosion prevention strategies for regions of recurrent orbiter corrosion

identified in the current report. Following the lead of previous CCRB activities, such strategies
will be formulated with full considerations for programmatic consistency, ease of operational

implementation, and cost effectivity, as well as for technical value. These recommendations will

provide the basis for future reports in this series.

Glen S. Nakayama
Chairman, Orbiter Corrosion Control Review Board
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1.0 Introduction

1.1 Overview and Intent

The first space shuttle orbiter flight was launched on April 12, 1981. The original design life was

10 years or 100 missions. Since then, each orbiter except Endeavour (OV-105) has flown at least

12 missions; OV-102 (Columbia) has flown over 18 missions (table 1). Currently, plans are under

consideration to continue flying the space shuttle until as late as the year 2020. Although the
orbiter was designed for extended use, a review of corrosion mitigation methods is essential for an

additional 25 years of operation.

Table 1.

Vehicle

0V-99

OV- 102

OV- 103

OV- 104

0V-105

Orbiter Vehicle Age Life (as of 1/94)

Missions Years in Service

10 3

15

18

13

10

12 9

5 2

Although the orbiter flight and ground environment is often compared to that of commercial and
military aircraft, there are significant differences. This is made evident by the relatively small

number of orbiter corrosion problems experienced to date. However, trends indicate a gradual

increase in corrosion reports in recent years, which is not unexpected as the orbiters age.

The intent of this volume of the corrosion report is to review all measures taken to limit orbiter

corrosion, from design considerations through operational maintenance. The corrosion that has

occurred is analyzed to identify possible inconsistencies in rationale, unavoidable environmental

conditions, and/or design shortfalls.

1.2 Orbiter Corrosion Control Review Board Charter

In a world of aging aerospace vehicles, there is ample precedent for a dedicated corrosion control

review team. Each manufacturer of civilian and military aircraft in America has assembled a

general company corrosion panel or, in many cases, aircraft-unique panels designed to follow

corrosion issues. Some defense agencies, such as the U.S. Navy, require that a dedicated

manufacturer-led corrosion prevention panel be formed for all new aircraft designs. This team is
active from the design phase through the operational life of the aircraft.

During the 1980s, Boeing Commercial Airplanes initiated a series of aging fleet evaluations. It

was determined that some operators do not utilize a proven corrosion prevention and control

program, which led, in certain cases, to unacceptable degradation of structural integrity and, in

extreme instances, to the loss of an airplane. Boeing established a corrosion prevention and

control team to identify all known corrosion problems that could affect continuing airworthiness of

the aging fleet and to summarize existing maintenance recommendations. Although this effort was



initially performedto addresstheagingfleet,Boeingstressesthatsuchprogramsshouldbe
initiatedearly,becausethecorrosionthresholdof somestructuresisasshortas5to 6years.

In July 1993,theOrbiterProjectCorrosionControlReviewBoard(CCRB)wasestablishedand
charteredto advisetheProjectandinitiateresolutionsfor technicalandoperationalactivities
involving corrosion.Specificresponsibilitiesincludecorrosionassessment,correctiveactions,
andcorrosioncontrolandprevention.

TheCCRBreviewsactivecorrosionissuesandensuresthattheappropriatepersonnelareinvolved
in theirresolution.Appropriatepersonnel,at minimum,includerepresentativesfrom system,
materials,andqualityengineeringareas.A list of activecorrosionissuesisupdatedcontinuously
throughinputsfrom projectmanagement,systemmanagers,andacorrosiondatabasewhich is
derivedfrom theOrbiterProblemReportingandCorrectiveAction (PRACA)System.In keeping
with theproactiveandpreventivenatureof theCCRB,additionalcorrosionissuesarealso
considered.Teleconsareconductedto review,status,andobtainconsensusonactivecorrosion
issues. Summariesarepreparedasrequiredfor theorbiterprojectandsubsystemmanagement.

By December1993,28corrosionissueswereidentifiedassignificantenoughto requireCCRB
review. Fifteenissueswereresolved,withCCRBrecommendationsimplementedand/or
forwardedto theappropriatemanagementoffice. Themostnotableissuein 1993wasexternal
rudderspeedbrake(RSB)corrosion.A resolutioninvolvingstrippingandrepaintingtheRSBand
performingregularwashesatKennedySpaceCenter(KSC)wasdevelopedby theCCRBand
approvedby thesubsystemmanagerandtheManager,OrbiterandGFEProjectsoffice.

1.3 KSC Corrosion Database

A corrosion database was created by the KSC CCRB representatives via a historical review of the

KSC PRACA database, which was established in 1983. The PRACA database tracks all

nonconformances reported on shuttle hardware detected at KSC, at Palmdale during orbiter

maintenance down period (OMDP), or in flight. The nonconformances (problem reports (PRs)

and material reviews (MRs)) are input into the PRACA database when detected; each entry includes
all information found in the 39 numbered data points on the first page of the referenced work

authorizing document (WAD). Entries are updated daily with resulting disposition and summary

as required, until the WAD is closed.

The PRACA database was searched for the problem description and disposition summary for all

entries written against orbiter vehicle corrosion. This search used the key words corrosion,
crack(s), scratch(es), discoloration, stain(s), rust, oxidation, pit(s), pitting, foreign, erosion and

scored. The following data points were selected from the 39 possible as output: PR number,

status, when detected, work area, orbiter location, orbiter zone, report date, end item control

number (EICN) 1 & 2, part name, part number, serial number, replacement serial number, STS

effectivity, datacode, description, and disposition. After reviewing the data from this initial query,

the key word list was reduced to corrosion, rust, oxidation and pits�pitting, resulting in a more

efficient and usable output.

The PRACA entries concerning corrosion targeted by this historical query were entered into a

database by RI-LSS personnel utilizing Macintosh Filemaker@ software. The Filemaker database

is more user friendly and flexible than the KSC PRACA system; it can be accessed through

networks by both Macintosh and PC workstations. Information provided through the KSC

PRACA system is presently being provided for entry into the Filemaker database on a monthly
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basisandincludes those WADs that have been closed since initial entry and open WADs written

within the previous month. In this manner all WADs initially entered as open will be updated and

the summary rationale added to complete the entry. Monthly updates reflect certain milestones in

orbiter processing; i.e., the quantity of new WADs increases at roll-in to the Orbiter Processing

Facility (OPF), while WADs closure increases at roll-out from the OPF and before launch.

Currently, efforts are under way by RI-LSS personnel to include corrosion information not located

in the KSC PRACA database. Data sources include the corrective action request (CAR) database
maintained by Rockwell at Downey and a database under development at the NASA Shuttle

Logistics Depot (NSLD). The CAR database includes all Shuttle Project CARs generated over the

life of the program. The NSLD database will include those WADs initiated at the NSLD. Queries

of these databases will provide data on corrosion that may be invisible to the KSC PRACA system,

i.e., data obtained upon tear down and failure analysis of a part or subsystem. The addition of

these sources to the database will provide a more complete historical overview of a corrosion issue.
The goal of the database is to aid in real-time corrosion problem solving and tracking, as well as to

provide trend analysis through historical data.

2.0 Design Considerations

2.1 Predicted Corrosion Environment

The Space Shuttle experiences corrosion environments from benign to severe as it progresses from

flight to flight. The relative severity, as evaluated by the CCRB, of each environment is illustrated

in figure 1. The orbiters are stored in the OPF, in which buildings are temperature- and humidity-

controlled. When moved to the launch pad, each orbiter is subjected to an almost constant salt

spray from the nearby Atlantic Ocean. In addition, the high humidity allows the formation of

condensation on all surfaces open to the atmosphere. Once the orbiter reaches low earth orbit, any

water that may have collected during earlier exposure evaporates in the vacuum of space. On
landing, the orbiter must be deserviced; during this period it is exposed to whatever the

environment is at the landing site. If the orbiter lands in California, it must be ferried across the

country to KSC. This is additional exposure to an uncontrolled environment until the orbiter

returns to the OPF. All these factors were taken into account when the overall corrosion protection

scheme was developed.

2.2 General Guidelines

Rockwell's proposal for corrosion protection of the orbiter was based on no structural failure due

to corrosion within a 10-year or 100-mission life. A detailed material control plan addressing

every material that would be utilized on the orbiter was implemented. The plan required that all

metals meet what was termed an 'A' rating for corrosion and/or stress corrosion. Metallic

materials were evaluated either by test or engineering judgment to meet these NASA Level 11

requirements.

Metals were required to meet MSFC-SPEC-250, class II requirements. Metals not listed in the

specification were subjected to a 1500-hour salt spray test. Metallic materials that were proposed

for use but not 'A' rated by MSFC-SPEC-250 (accepted for unrestricted use with respect to

corrosion) were evaluated by their use, location, or protection schemes and upgraded to 'A' status

if possible.
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Figure 1. Variation of corrosion environment during typical flow.

Rockwell used MSFC-SPEC-522 as a guideline for determining the rating of material for stress

corrosion cracking (SCC). For instance, the requirement for aluminum alloys is freedom from

cracking after 30 days alternate exposure in a 3.5% sodium chloride solution while stressed to 75%
of the material's yield strength. However, where essential materials were used that did not meet

the 'A' rating, the designer would consider, as a minimum, the following actions to reduce the

probability of stress corrosion:

a) Selecting less susceptible alloys or tempers.

b) Reducing sustained stress levels on the part below stress corrosion threshold levels.

c) Protecting the part from the detrimental environment by hermetically sealing or coating the part

or by inhibiting the environment.
d) Avoiding or reducing residual stresses in parts or assemblies by stress relieving, by avoiding

interference fits, or by shimming assemblies.

e) Avoiding galvanic couples which may tend to accelerate the stress corrosion.

f) Providing for regular inspection of parts to determine surface flaws and cracking during the life

cycle of the part.

g) Improving the surface quality of the part by reducing surface roughness or increasing surface

compressive stresses.

Approval of any of these actions again had to be approved by Rockwell M&P and NASA through

a material usage agreement (MUA).

Additionally, the Rockwell Standard Design Manual restricts the use of galvanically dissimilar

metals by requiting that they not be used in contact unless suitably protected against electrolytic

corrosion. Faying surfaces of dissimilar metals must be sealed against water intrusion or separated

with a layer of corrosion-inhibiting epoxy or room-temperature vulcanized (RTV) silicone rubber.

Dissimilar metals were considered compatible if they were in the same grouping as specified in

MSFC-SPEC-250, or if the difference in potential was < 0.25 volts. Also imposed was the
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requirement that all fasteners be installed wet with epoxy. The epoxy of choice was a chromated

primer known under the brand name Super Koropon.

To address specific corrosion problems associated with aluminum alloys, additional restrictions

were applied. Alloys susceptible to exfoliation were eliminated from design consideration as were
all forms of alloys that exhibit stress corrosion thresholds of less than 25 KSI.

2.3 Special Considerations

A dry nitrogen gas system was implemented to purge the interior spaces of the orbiter vehicle. The
purpose of the purge is to maintain a dry environment by preventing condensation. The nitrogen

purge is continuously operating while the vehicle is in the Vehicle Assembly Building (VAB) and

again, once the vehicle has been mounted on the Mobile Launch Platform (MLP). To date, there

have been no significant corrosion issues in any areas of the vehicle maintained with this purge.

2.4 Water Intrusion/Entrapment Design Features

Drain holes were designed into the orbiter to prevent water from accumulating within the open

orbiter structure. The drains were placed in selected areas of the structure so that drainage will
occur in both horizontal and vertical orientations.

3.0 Inspection And Reporting

3.1 Inspection Requirements

Most of the orbiter recurring inspection requirements originate from the Operations Maintenance

Requirements and Specification Document (OMRSD) V30 (Air Frame Inspection) and V31 (Zonal

Ingpection) documents. As indicated by Note R-2 adjacent to V30GEN.010 para. 3.2.2, "The

inspection requirements in this document are designed to detect damage/deterioration resulting from

service and age." The inspector is to verify that there are no cracks or corrosion in the structure or
in fillet radii and notched areas.

There are four levels of inspections. Level A, External Surveillance, is used for detecting
obvious discrepancies in externally visible structure, systems, and components. Level B. Internal

Surveillance, is used for detecting similar conditions in internal structure. Level B may include the

use of a borescope.

Level C, Detailed, is an intensive visual check of a specified area. Inspection aids such as mirrors

or a hand lens may be required, and a borescope is recommended when access is confined. This

inspection level, however, has been the source of some misunderstanding in the past. This is

because the V30-10001 Job Card defines the distance to be used for this inspection level normally
to be not greater than 18 inches. Areas found to be suspect at this distance should then be

examined more closely to confirm findings. It is noted that minor corrosion may therefore not be

detected using Level C. This is not an indication that the inspection was performed improperly,
but that the corrosion was too minor to be seen at 18 inches.



LevelD, SpecialDetailed,isanintensivecheckof aspecifiedlocationwhichincludesaspecial
technique,suchasnondestructiveevaluation(NDE) orhigh-magnificationborescope,andfor
whichsomedisassemblymayberequired.

Therequirementsfor inspectionfrequencyvary in accordance with OMRSD requirements. For

example, some inspections are performed every flight, some have a five-flight interval between

inspections, and some are performed only at orbiter maintenance down period (OMDP). Detection

of corrosion in a particular area has resulted in initiation of a requirements change notice (RCN) to

change the inspection level or frequency. Or the area may be called out as a specific point of

interest to be examined in future inspections. Thus, once corrosion is found in an area, that area is

commonly inspected with the awareness that it has had a history of corrosion.

Additional inspections are required as a result of PRs and special requests from KSC and JSC

engineering organizations. Subsystems have individual inspection requirements in the OMRSD as
well.

3.2 Inspection Methods

Most inspections for corrosion on the orbiter are visual. Inspection Levels A, B, and C (noted

previously) are visual checks, which may include use of a borescope, flashlight, hand lens

(typically 5X or 10X), and mirror. Removal of fairings, access doors, thermal control system

(TCS), liners, etc. may be required, as well as surface cleaning.

Inspection Level D, Special Detailed, uses a high-magnification borescope or NDE methods
including penetrant testing, eddy current, ultrasonic, or X-radiography. These methods have been

augmented with photography and videotape recording. Corrosion pit depth measurements have
been made with dental molds.

Visual inspections performed apart from normal processing and the OMRSD-required checks have
also detected corrosion. Teardown and refurbishment activities at the manufacturer and at NSLD

have detected corrosion in hardware that was not evident via other means.

Other methods for detecting corrosion include various modes of hardware performance

degradation. Examples include pressure loss in the ammonia boiler heat exchanger, flow rate

reduction in the Freon cooling loop, and fuel cell leakage causing manifold pressure decay.

3.3 Corrective Action Reporting (CAR) Process

When corrosion and other anomalies deviating from design specifications are detected, they are

reported using PRACA. Information from this computerized system is available at Rockwell-

Downey, JSC, and KSC, and includes problem description, part number, probable cause, and

disposition. The purpose of the problem reporting system is to ensure adequate visibility of

nonconformances that require engineering input for resolution.

A proposed repair for a problem that cannot be resolved by returning the discrepant hardware to
design specification requires approval of the Material Review Board (MRB). The MRB is an

element project-level engineering and quality board chaired to review nonconforming material.
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Recurringproblemsdetectedin flight hardwareareaddressedthroughcorrectiveactionand
recurrencecontrol. Action is takento correct,reducetheincidenceof, andpreventtherecurrence
of nonconformances.

4.0 Structural Corrosion History

Throughout orbiter history, numerous discrepancy reports have been written to document
corrosion on many different flight hardware assemblies. Most of these discrepancies indicate

minor structural surface corrosion. In these cases, the corrosion is removed mechanically or

chemically, and the surface coating is reapplied. This repair is performed only when the structural

integrity of the assembly can be maintained. When the corrosion has been severe enough to affect

the margin of safety, doublers have been added, e.g., wing leading edge (WLE) spar and rudder

speed brake (RSB) panels. In some instances, corrosion of fasteners has been severe enough to

warrant removal and replacement. In areas where galvanic (dissimilar metal) corrosion has

occurred and the Koropon protective coating was insufficient, a barrier layer of RTV may have

been added to prevent recurrence. It is important to note that all structural corrosion instances are

evaluated on a case-by-case basis (see section 5.1).

4.1. Fleet-Wide Corrosion Issues

Following is a list of selected issues from the KSC PRACA database as tracked by the CCRB:

a. Wing Leading Edge Spars. The WLE spar is constructed of either an aluminum honeycomb

sandwich panel (OV-102) or a corrugated aluminum alloy approximately 0.040 inches thick

(OV-103 and subs). The leading edge surfaces are lined with Inconel thermal control system

(TCS) blankets. Attached spar fittings hold the reinforced carbon to carbon (RCC) panels

which give the wing its characteristic airfoil shape and thermal protection. Three of the 22 RCC

panels and the associated Inconel TCS blankets and spar fittings are removed at each orbiter
processing flow to perform a sampling type inspection of the WLE for corrosion, with a

contingency that the entire wing spar be inspected between OMDP periods. The forward

surfaces of the corrugations are coated with room temperature vulcanization (RTV) to inhibit

the formation of dissimilar metal corrosion. However, the set-back surfaces have only the

basic chem-film and three coats of Koropon. Pitting corrosion has been noted on these set-

back surfaces, particularly near drain tubes. Figure 2 shows an overview of corrosion found
on the WLE behind three adjacent RCC panels on OV-102. The pattern of the pitting suggests

a galvanic effect due to the drain tube, as shown in figure 3. This area does not receive a

conditioned GN2 purge. Typical damage detection during a flow is approximately 30 pits per

wing averaging 0.010 inches deep.



&

Figure 2. Overall view of WLE spar corrosion found on OV-102 behind left-hand RCC panels 8,
9, and 10. Each brown-colored arrow points to a pitting location.

Figure 3. Close-up view of galvanic corrosion site near a drain tube behind RCC panel 12 of
OV-103's right-hand wing. Paint and corrosion product have been removed.

8
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Rudder Speed Brake. The RSB is made of conventional aluminum ribs and spars with

aluminum honeycomb skin panels. The honeycomb facesheet surface has been chem-filmed

and has had two coats of Koropon and a polyurethane topcoat applied. Pitting corrosion,
primarily adjacent to stainless steel fasteners, as shown in figure 4, has been detected on all
orbiters. Dissimilar metal corrosion has also been detected near or beneath the Inconel thermal

barriers, as shown in figure 5. This problem was corrected with a design change which added

a barrier layer of RTV. Typical damage detected during each processing flow is from 30 to 60

pits approximately 0.001 to 0.017 inches deep. Tracking of PRs detected a trend of increased

corrosion after 6 years of service. A detailed visual inspection of the RSB honeycombed

facesheet is performed during every orbiter processing flow. Like the WLE spar, this area
does not receive a conditioned air purge. There is a Rockwell-Downey proposal to strip the

surface down to bare aluminum every 6 years and repaint, including coats of Koropon and

polyurethane. This stripping and repainting has been approved for implementation on OV-102

during OMDP- 1. Recently, washing of the RSB panels has been instituted. The goal of this

washing is to remove any corrosive contaminants which may be introduced from the salt spray
environment at the pad.

Dome Heat Shields. Components on the dome heat shields have a history of corrosion. Most

problem reports document surface corrosion, which was cleaned with isopropyl alcohol.
Recently, more serious stress corrosion cracking (SCC) has been detected. The components

with corrosion are made of 17-4 and 17-7 PH, TH1050 (CRES), which has a low resistance to

SCC. A material change request (MCR) and an engineering change order (ECO) have been

written to change the dome ring covers of the dome heat shield to Inconel 718, which has a

higher resistance to SCC. Similar changes may be warranted for other dome heat shield

components. All dome heat shields are currently removed every flight for space shuttle main

engine SSME removal and replacement. Inspections are performed on a sampling basis, with

the entire dome heat shield being inspected within four flights.

External Tank (ET) Doors. The ET doors are made of beryllium and are adjacent to Inconel

718 edge fingers. Latch supports are attached to the doors. Pitting corrosion, shown in
figures 6 and 7, has been detected at the beryllium/Inconel interface on at least two of the four

orbiters. The pitting is too shallow to constitute an issue at this time. A temporary repair has

been established in which the pits are cleaned of any loose active corrosion product, and those

over 0.010 inches deep are potted with epoxy adhesive and covered with Koropon. Typical

damage detected during each processing flow is 25 to 35 pits up to 0.010 inches deep per door.

A permanent repair procedure is being developed considering the unique metallurgical and

safety problems related to beryllium.

Auxiliary Power Unit (APU) Cavities (56-01 and 56-02). The left-hand and right-hand APU

tank servicing port has been experiencing some corrosion pitting. The corrosion has been

found on the side wall frame at the service panel interface area. Corrosion has been found on

OV-102 (maximum pit depth 0.049 inches) and OV-103 (maximum pit depth 0.037 inches).

During the inspection of OV-102, it was revealed that the RTV coating was missing at the

interface between the side wall frame (aluminum) and the service panel (titanium). This RTV

coating was applied during rework. A decision was made by the CCRB to inspect this
interface on each orbiter and clean and coat faying surfaces with RTV when corrosion is

suspected. The 56-01 and 56-02 cavities are inspected during each processing flow.

• _ 9



Figure 4. Typical view of corrosion found on the RSB adjacent to stainless steel fasteners.

Figure 5. Corrosion found on OV-IO3's RSB structure adjacent to the edge of an Inconel thermal
barrier (removed).
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Figure 6. Overall view of pitting corrosion found at the beryllium/Inconel interfaces of the left-

hand (LH2) ET door from OV-102.

Figure 7. Close-up view of pitting corrosion of beryllium structure adjacent to an Inconel finger

on the right-hand (LO2) ET door from OV-102.
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4.2 Selected Unique Corrosion Issues

The following corrosion issues that have been addressed by the CCRB are not considered fleet-
wide problems:

a. OV-102 Left-Hand (LH) Inboard Elevon. The OV-102 LH inboard elevon trailing edge,

which is a honeycomb sandwich, was discovered to have a one-square-inch area of facesheet

and core corroded away. It was determined to have been caused by improper sealing and
placement of the elevon drain hole. The damage was repaired and the drain hole was relocated.

The other vehicles are being inspected during OMDP for proper drain hole placement.

b. OV-102 Right-Hand (RH) Outboard Elevon. Scratches with corrosion were found in

approximately 85 locations on OV-102's RH outboard elevon. The maximum pit depth was
0.004 inches. Possible causes were identified as (1) undetected corrosion in the skin at time of

manufacture with subsequent application of Koropon and/or (2) scratches caused by improper
tile removal.

C. Wing Carry-Through Spar. V30 inspections have discovered corrosion of the wing carry-
through spar structures on OV-102 and OV-103. On OV-102 corrosion was found near the

lower skin to 1307 bulkhead, three areas on the LH side (with a maximum pit depth of 0.0245

inches), and one area on the RH side (with pit depth of 0.0047 inches). On OV-103 corrosion

was found around Hi-loks on the RH and LH 1307 bulkhead fittings and on various areas on

the RH and LH lower bulkhead. The deepest pit found on OV-103 was 0.016 inches. All

areas were cleaned and the corrosion was blended out, followed by applications of chem-film
and Koropon to return the areas to print.

d. Body Flap Cove. Corrosion was recently discovered in the body flap cove of OV-103, shown
in figure 8. Two areas of corrosion were noted: (1) rivets in the cove area and (2) at the

actuator fitting to airframe faying surfaces. Corrosion of the rivets has been attributed to a

galvanic couple between the aluminum rivets and titanium actuator fittings. Structural analysis
indicated that the need for the rivets was minimal. The rivets are not replaced until 30% of the

exposed head is missing. The actuator fitting corrosion was pitting. These areas were all

cleaned and re-Koroponed. Mold impressions revealed defect dimensions 0.623 inches long,
0.195 inches wide and 0.023 inches deep; the fitting in this area is 0.080 inches thick. These

items are currently under review by the CCRB.

5.0 Subsystem Corrosion History

In the orbiter history a number of corrosion issues have been documented within the various

subsystems.

a° Ammonia Boiler. The ammonia boiler is a heat exchanger in the primary cooling loop for the
payload bay and the cabin instrumentation. The ammonia boiler removes heat from the Freon

cooling fluid as the Freon passes through a tube bundle by boiling the liquid ammonia which is

vented off the orbiter. Accidental contamination of these tube surfaces before brazing resulted

in the sensitization of these thin walled tubes (0.008 inches) made of type 304L stainless steel.
The sensitized tubes were attacked and penetrated by the ammonia.

12



Figure8. Corrosionfoundon thebodyflapcovestructurefrom OV-103.

b.

The corrective action was to change the tubing to 347 stainless steel, which is not susceptible to

the chromium carbide segregation, and to upgrade cleaning procedures to prevent
contamination.

APU Gas Generator Valve Seats. The APU gas generator valve module (GGVM) utilizes four

tungsten carbide valve seats to regulate hydrazine flow to the catalyst bed. The 5 mm diameter
valve seats have sealing lands that are only 0.115 to 0.150 mm wide.

The seats are manufactured from sintered KZ-96 tungsten carbide containing 5% cobalt as a

binder. In mid-1985, valve leakage problems during acceptance tests were traced to a

breakdown of the valve seat lands. After an APU was shut down during a flight,
contamination traces were found on one of the valve seats. The manufacturer instituted a

revised cleaning process involving a hot water rinse for both production and refurbishment.

Shortly after that, the valve seat lands began experiencing an extremely high rejection rate

during acceptance test procedure (ATP). A subsequent failure analysis indicated that the hot

water was leaching the cobalt binder from the valve seat lands.

A few years later, the valve seats began experiencing frequent leaking problems. Failure

analysis indicated that ammonium hydroxide formed by the decomposition products of
hydrazine and water condensation from the atmosphere backflowing down the vent duct were

apparently initiating a cobalt leaching problem similar to that experienced previously. Tests

proved that such exposure induced leaching and subsequent impacting of the lands by the valve

poppets resulted in breakdown of the seats and the noted leakage problems.

ORIG'M,',, ,,'-- PAGL
COLOR PHOTOGRAPH
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APU Injector Tubes. The injector tube of the orbiter APU carries hydrazine fuel to the catalyst
bed, where it is heated and decomposes. The hot decomposed gases drive a turbine wheel to

generate secondary power for spacecraft systems. Shortly after touchdown from the ninth

launch of the orbiter, two of the three APUs experienced fires. Extensive investigation

determined that the fires resulted when hydrazine leaked through cracks in the Hastelloy nickel-
based alloy B injector tube walls while on orbit and froze on exterior surfaces, and then melted

and ignited during reentry.

The fractures on each tube were intergranular, starting on the inside diameter, and occurred in

the same location. The cracks were determined to be caused by stress corrosion. It was

determined that ammonia or ammonium hydroxide were the only potential fluids that could

cause SCC on the Hastelloy B. The ammonia vapors resulted from the decomposition of the

hydrazine in the catalyst bed. Moisture, resulting in the formation of ammonium hydroxide,

was available from the atmosphere migrating back through the exhaust duct. Misalignment of
the tubes during installation resulted in the stresses. A sensitized microstructure was also

found, and was determined to be a result of carbon deposition during the electrical discharge

machining (EDM) of the injector tubes.

The solution was to eliminate the preload stresses on the injector tubes by instrumenting the
installation and to eliminate the sensitized carbide network by reaming the tube inside diameter

and by revising the braze process to ensure even distribution of any carbides. Later tubes were
also coated with a thin chromized layer.

Water Spray Boiler (WSB). The WSB cools the hydraulic and lubrication fluids by spraying
water onto a hot tube bundle with the fluids flowing through it. The tube bundle is 321

stainless steel, and the outer shell is 6061 aluminum. The boiler is experiencing pitting

corrosion of the aluminum shell (fig. 9). The corrosion protection in place is a Teflon-infused

anodized coating. The pits typically occur at sharp comers or near the stainless steel spray
tubes on the interior.

It was determined that the galvanic potential between the tubes and the shell was driving pit

formation at local weak spots in the coating. Contributing to this was the conversion of the
water to steam in the boiler, which concentrates all the impurities in the water.

A design change was approved to replace the shell material with Inconel 718 which is

galvanically similar to the stainless tubes and not subject to crevice corrosion.

Flash Evaporator. The flash evaporator is used to reject orbiter heat loads from the Freon-21

coolant loops during ascent and entry, and to supplement the radiators in orbit. There are two

flash evaporators in one envelope. The evaporators are cylindrical and have a finned inner

core. The hot Freon from the coolant loops flows around the core. Water is sprayed onto the

core, where it flashes to steam and cools the Freon. The evaporator draws its water from

potable water storage tank B. There are four potable water storage tanks on each orbiter that
are manifolded together. The water is supplied by the fuel cell power plant which generates

water as a byproduct. The astronauts draw their drinking water from tank A, which has what

is termed a "microbial check valve" upstream that dispenses iodine into the water as a biocide.

Prior to launch, all the storage tanks are filled with water containing 25 ppm iodine.

Three instances of corrosion have occurred on flash evaporators, all associated with iodine.

Pitting corrosion occurs in the anodized aluminum core from the water side to the Freon side,

with iodine present in the corrosion products. A resolution to this item is currently in work.
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Figure 9. Water spray boiler corrosion, inner diameter of outer shell.

, Forward Reaction Control System (FRCS) Tubing. The tubing assembly for the FRCS

supplies the connection from the MMH and N204 storage tanks to the thrusters. The FRCS
tubing assembly in OV-105 was undergoing final assembly and test when several welded tube

joints were found to be leaking. The welded tube joint is a sleeve weld joint, consisting of two

tubes butted against each other with a sleeve over the joint. A weld is then made which joins
both tube ends and the sleeve with the sleeve acting as filler. The tubes were of 304L stainless

steel and the sleeves could be either 304L, 321, or 347 stainless steel. Upon metallographic

examination, a dissolution type corrosion was found to be taking place along the heat-affected

zone, somewhat akin to "knife-line" attack. The nature of the sleeve weld produces crevices at
the ends of the sleeve between the tubes and the sleeve. An electrochemical etch procedure was

being used to mark the tube with an x-ray identification number adjacent to each joint after it

was radiographically inspected. The acid etchant was wicking into the crevice as it was being
rinsed off the tube and preferentially etching out the delta ferrite phase in the weld metal.
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6.0 Unanticipated Environments

6.1 Extended Pad Stays

Normal STS processing includes a scheduled period at the pad for payload installation, final

servicing, and checkout prior to launch. The average pad stay is approximately 31 days. During

twelve pad stays, problems that arose with the flight hardware extended the time normally spent at
the pad. The longest time spent at the pad was 166 days prior to OV-102's tenth flight. Table 2
summarizes the pads stays for each vehicle.

These extended stays at the pad are of concern to the CCRB. The pad is located a few hundred

yards from the ocean. The coast exposure is very severe because of the heat, high humidity, salt
air, and the daily condensation of dew deposited onto the orbiter structure. The orbiter TPS

bonding system provides adequate corrosion protection under most circumstances. Exterior

assemblies on the orbiter that are not covered by the thermal protection system (RSB, WLE spar,
and ET doors) are primed with Koropon and in some cases also painted. Condensation can occur

on these surfaces, which may initiate corrosion activity when the primer/paint barrier is violated.

These areas have shown repetitive corrosion problems, as stated earlier in this report. The CCRB

is actively working to address these corrosion issues. A possible solution is expanding the present
purge system to cover additional areas.

6.2 Pad Firex System

The pad is equipped with a Firex system that is activated when fire hazards, including gas leaks,
are detected near the orbiter. The system is designed to spray the specific external area of the
orbiter where a fire hazard has been detected.

The water used in the Firex system is filtered, untreated water. Since a main engine abort normally
requires a minimum of a week to resolve, the designed drainage system along with normal

evaporation should dry out these areas. Although the water in the tank reservoir is filtered, there
may be stagnant water in the lines that contain various ionic contaminants. This water could act as

an electrolyte if introduced into the orbiter.

There are three systems which make up the Firex system at the pad. It is suspected that past uses
of these systems may have contributed to previous structural corrosion problems. These systems
and the times they have been used:

Orbiter SSME Water Deluge System--This system is automatically turned on by the ground

launch sequencer during an abort. This deluge covers the main engine nozzles/heat shield area

and the 17" disconnect area. During operation of this system, the Rudder Speed Brake is

subject to a considerable amount of deluge. This system operates for 2-10 minutes, depending
on the abort conditions. The system is manually shut down.

Times used: OV-099, 41C; OV-103, 51A; OV-099, 51F; OV-103, STS-26R FRF; OV-105,
STS-49 FRF; OV-102, STS-55; OV-103, STS-51; OV-105, STS-68.
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Table 2. Pad Stays

STS FLT
OV-102 STS-1 1"

STS-2 2*
STS-3 3
STS-4 4
STS-5 5
STS-9 6
61C 7
28R 8
32R 9
35 10"

40 11
50 12
52 13
55 14"
58 15
62 16

OV-103 41-D 1
51-A 2
51-C 3
51-D 4
51G 5
51-1 6
26R 7*
29R 8
33R 9
31R 10
41 11
39 12"

48 13
42 14
53 15
55 16
51 17.
60 18

OV-104 51-J 1
61-B 2
27R 3
30R 4
34 5*
36 6
38 7*

37 8
43 9
44 10
45 11
48 12"

OV- 105 49 1*
47 2
54 3
57 4*
61 5

"*"= Considered "Extended Pad Stays" (>50 Days)

Excluding "*" Flights, Avg Pad Stay: 31 Days

ROLL

TOPAD
Jan 1,81
Sept.,81
Feb 20, 82
May 31, 82
Oct5, 82
Nov 13,83
Dec 26, 85
Jul 14, 89
Nov 28, 89
Apr 22, 90
Aug9, 90
May 2, 91

Jun 3, 92
Sep 25, 92
Feb 7, 93
Sep 17, 93
Feb 10, 94

May 19,84
Oct 23, 84
Jan 5, 85
Mar 28, 85
Jun 4, 85
AugT,85
Jul 4, 88
Feb 3, 89
Oct 27, 89
Mar 16, 90
Sep4, 9O
Feb 15, 91
Apr 1, 91
Aug 12, 91
Dec 18, 91
Nov 8, 92
Mar 15, 93
Jun 26, 93
Jan 5, 94

Aug 3O,85
Nov 12, 85
Nov 2, 88
Mar 22, 89
Aug29,89
Jan 25, 90
Jun 17, 90
Oct 12, 9O
Mar 15, 91
Jun 25, 91
Oct 24, 91
Feb 19, 92
Jun 11,92

Mar 13, 92
Aug 25, 92
Dec 3, 92
Apr 28, 93
Oct 28, 93

TOTAL PAD

LAUNCH
Apr 12, 81
Nov 12, 81
Mar 22, 82
Jun 27, 82
Nov 11, 82
Nov 28, 83
Jan 12, 86
Aug 08, 89
Jan 9, 90
Jun 12, 90
Dec 2, 90
Jun 5, 91
Jun 25, 92
Oct 22, 92
Apr 26, 93
Oct 18, 93
Mar 4, 94

Aug3O,84
Nov 8, 84
Jan 24, 85
Apt 12, 85
Jun 17,85
Aug 27, 85
Sep29,86
Mar 13, 89
Nov 22, 89
Apr 24,89
Oct 6, 90
Mar 14, 91
Apr 28, 91
Sep 12, 91
Jan 22, 92
Dec 2, 92
Apr 8, 93
Sep 12, 93
Feb 3, 94

Oct 3, 85
Nov 26, 85
Dec 2, 88
May 4, 89
Oct 18, 89
Feb 28, 90
Aug8,90
Nov 15, 90
Apr 5, 91
AUg 2, 91
Nov 24, 91
Mar 24, 92
Ju131,92

May 7, 92
Sep 12, 92
Jan 21,9
Jun 21,93
Dec2, 93

STAY (DAYS)
102
7O
31
28
38
15
18
25
42
51
115 166
34
22
25
78
31
21
Total: 726
38
16
19
16
14
21
87 FRF
38
26
39
32
27
27 54
31
35
24
24
78
3O
Total: 592
35
15
3O
43
5O
34
62
34 86
21
38
31
33
5O
Total: 466
55 FRF
18
41
54
35
Total: 203
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• LH2/LO2 T-0 Water Deluge System--This system is manually operated from the launch

control center (LCC). The deluge covers the LH2 and LO2 T-0 umbilical areas.

Time used: OV-099, 51F

• Orbiter Skin Spray System--This system is manually operated from the LCC. The deluge

covers the 50-01 and 50-02 aft access doors and surrounding areas.

Time used: Never used.

6.3 OPF Firex System

During the OPF processing of OV- 102, STS-32R, the fire protection system was inadvertently

activated. The system operated for several minutes, releasing an undetermined amount of water.

The orbiter was configured with the payload bay doors open, the flipper doors open, and the body

flap off. A large amount of standing water was removed from the midbody floor along the

centerline of bay 13, back to the Xo 1307 bulkhead. The horizontal processing orientation of the

orbiter in the OPF creates a low point at this area, and there is no drainage system in place. Water
was also removed from the elevon cove areas. Since the incident, minor corrosion has been noted

at the lower bulkhead structure. The midbody wing carry through structure is being addressed by
the CCRB.

6.4 Water Intrusion

Occasionally rain water intrusion occurs during pad stays, orbiter ferry, or SCA off-loading at the
MDD. Water can enter through vent doors, access panels, mating sections and the payload bay

doors. Although there is a horizontal drainage system (see section 2.4), standing water is still
found at some low lying areas. This water is immediately removed upon access to the areas. The

CCRB is concerned that inaccessible water may have wicked into structural joints.

6.5 Fuel Spillage

The orbiter carries hypergolic fuel (MMH) and oxidizer (N204) in tanks within the FRCS and the

OMS pods to power orbiter maneuvering engines and thrusters. Spilling of these hypergolic fluids

during the transfer or leaking of the thrusters due to faulty hardware exposes the OMS pod and

FRCS structure to chemicals highly corrosive to the metal airframe components. Other corrosive

materials used in and around the orbiters are NzH4, for the APU, and NH3 in the ammonia spray
boiler, the most notable instance of corrosion caused by fuel spillage occurred at the APU

servicing panels. This incident is covered in detail in a previous section.

7.0 Access

Long-term planning for the maintenance and inspection of the orbiters was not given full

consideration until after the orbiters were already constructed. As a result, many areas of the

structure are difficult to access for corrosion inspection. Subsystem components, such as wire
bundles, tubing, ducting, tanks, thrusters and line replacement units (LRUs) obstruct structure,

some of which is significant. Borescopes are used extensively to inspect in locations where access
is limited.
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A concernfor inspectingtheorbiterexternalsurfacefor corrosionis thatmostof it iscoveredwith
thermalprotectionsystem(TPS),whichincludestiles, flexibleinsulationblankets,andfelt
reusablesurfaceinsulation. In manycases,the interiorsurfaceis accessiblefor inspectionswhich
allow for detectionof throughcorrosionconditions.Tile removalnecessaryfor TPSservicing,as
well asasamplingplanto ensureTPSintegrity,providesrandomaccessto someof thestructure
everyflow. However,theTPSlimits theamountof structureavailablefor inspection.

Theinteriorstructureof theorbiteris oftenlinedwith TCSblankets,whichalsoobstructaccessto
thestructurefor theperformanceof corrosioninspections.Althoughtheseblanketscansometimes
beremovedor lifted to provide access, in some areas blanket removal would require destroying the

blankets, and reinstallation would be impossible without structural disassembly. An example is the

cavity between the forward fuselage and the crew module pressurized cabin. This area varies from

approximately three feet to only a few inches and encompasses the entire area surrounding the crew

module (excluding windows and aiflock hatches). Another passive TCS obstruction to inspections

is RTV heat-sink material, which is applied to the payload bay floor and the forward reaction

control system cavity. Sampling inspection techniques in which strips of RTV are removed to

inspect the skin underneath are employed in these cases.

There are also cavity interiors, such as those within the rudder speed brake, that require inspection

for corrosion but are only accessible with a borescope. Although there are some indications of
minor corrosion forming within these cavities, access for further investigation and corrosion

control is limited without cutting into or disassembling the structure.

8.0 Training/Inspection Criteria

All recurring inspections for corrosion, as prescribed in the V30 OMRSD file, are performed by a

joint team of one NASA and one contractor inspector. NASA and contractor quality inspectors are

spacecraft professionals experienced in detecting corrosion and other anomalies.

Candidates for training to be an inspector for the shuttle program must possess proper

qualifications, such as an FAA airframe and power plant (A & P) license, prior experience as an

orbiter technician, or prior related employment in the aerospace industry.

Inspectors are required to complete an on-the-job training (OJT) program before being allowed to

perform an inspection unaccompanied. The OJT program was established to ensure that personnel

are trained and qualified in a comprehensive, detailed, and controlled manner. OJT is conducted

by quality supervisors or designated senior inspectors. The trainer-to-trainee ratio is limited to

optimize training. As the trainer and the trainee agree that the trainee is comfortable with the tasks,

safety measures, and reference material necessary to perform a given job assignment, that task is

signed off in the OJT package as complete, and the inspector is permitted to perform that task
unassisted in the future. OJT packages constitute records to ensure proper qualification for a given

job assignment.

One persistent issue identified early in the CCRB review process is that a general inconsistency

exists between field inspection, assessment, and reportingprocedures and the engineering

perception of corrosion problems. The CCRB has served as an independent body for the

resolution of such issues and will continue to provide assistance in this area. However, the

solution to this problem has been identified as primarily one of review, understanding, and

modification of existing inspection procedures to reflect the expectations of the combined

engineering community, and subsequently communicating these expectations to operations
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personnel.Consequently,theCCRBhasworkedcloselywith theappropriateengineering
disciplinesin generatingrevisedorentirelynewcorrosioninspectionandreworkproceduresona
case-by-casebasis,asissuesareaddressed.Theboardhasinitiatedaprogramof technician
trainingat KSCin orderto improvetheconfidenceandreliabilityof assessments.

As anaidto trainingindetectingcorrosion,LSOCQualityEngineeringdevelopedaCorrosion
TrainingManualin 1993,usingcurrentaeronauticalandmilitary aircraftmaintenancesources.All
qualitycontrolsupervisorsreceivedtrainingin useof themanual.Themanualsweredistributedto
all qualitycontrolinspectorsthroughtheir supervisors.Corrosioninspectiontraininghasreceived
apositiveresponsefromtheparticipants.TheCCRBwill continueto monitorthetrainingprogram
onaregularbasis.

9.0 Analysis/Discussion

During calendar year 1993, the CCRB reviewed a total of 26 formally documented orbiter

corrosion issues representing new corrosion-related anomalies as well as more persistent, long-

term problems. For purposes of the discussion in this section, these issues are divided into

arbitrary, but functional, classifications: problems associated with mechanical subsystems (13)

and problems associated with primary or secondary structure (13), as summarized in table 3. In
the course of this review, additional related issues were addressed so that the number of actual

topics is substantially greater than the number formally entered into records.

Of the 13 structural corrosion issues reviewed, 12 (93-1 through -5, -7, - 10, - 13, - 17 and -21

through -23) were attributed to the effects of environmental/atmospheric exposure, and 1 (93-6) to

contamination during hardware processing. Structural corrosion due to atmospheric exposure was

discussed on a regular basis throughout the course of CCRB meetings during 1993. An

explanation for this concentration of effort was pursued through an analysis of the CCRB
corrosion database [ 1].

In terms of the frequency of corrosion occurrences at various vehicle locations, the corrosion

database shows that of the 981 entries in the corrosion database, 926 records have respective
associated zonal locations [2] listed, as summarized in table 4.

Table 4 suggests that a large number of documented corrosion problems are associated with aft

sections of orbiter vehicles (major zones 3xx, 4xx, and zones 540 and 550 (right and left

OMS/RCS), 651-653 and 751-753 (right and left inboard elevon, outboard elevon, and wing

extension box, respectively), 860 and 870 (right and left ET umbilical doors, respectively). The
conclusions drawn from table 4 are supported by further analysis of the corrosion database,

showing that more than 50% of the entries are associated with aft sections. During the study of the
database, it was noted that, with the exception of zones 540 and 550, nearly all of the aft-identified
entries are structural corrosion issues.

These findings substantiate the CCRB concern for corrosion of orbiter structure. The above

analysis excludes structural corrosion issues associated with the wing leading edge spar located in
the vehicle mid-section (133 issues documented, representing 13.6% of the total number of

records). In addition, the data support the expectation that corrosion should be most severe in
what becomes the lower sections of an orbiter vehicle when it is positioned in the vertical launch

orientation, especially during the critical periods of outdoor exposure that include salt mist and rain
(refer to section 2). Aft sections that are left relatively unprotected by the TPS are particularly

susceptible to atmospheric exposure. As an example, the RSB and body flap cove locations
account for 16% of all corrosion anomalies.
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Table 3. Activity Summary and Classification of CCRB Issues
CY 1993

ID Number

93-1

Issue

RSB Internal
Subsystem Structure

X

93-2 RSB External x

93-3 x

93-4

93 -5

93 -6

93-7

Wing Leading Edge Spar

Body Flap Rivets
Corrosion Under Tile

APU Cavity
ET Door

OMS Engine

Water Spray Boiler
Dome Heat Shield

93-8

93-9

93-10
i

93-11 Ammonia Boiler x

93-12 x

93-13

x

x

X

Body Flap Actuator
Elevon Cove Seal x

93-14 MPS Manifold Relief Valve x

93-15 x

93-16

93-17

93-18

93-19

93-20

93-21

93-22

93-23

93-24

93-25

3-Way Solenoid Valve

Freon Cooling Loop

Water Intrusion/Entrapment
RSB Actuators

Training
Corrosion Database

Wing Can T Through Spar

RSB Through Pitting
O2N2 Relief Port

OMS/RCS 17-4 PH Pitting
MPS Iron Oxide

FCPV Leakage
ON2 Check Valve

OV-104 Potable Water System

93-26

93-27

x

X

x

x

X

X

X93-28

X

Table 4. Corrosion Incidence by Orbiter Zone Location
(926 of 981 entries)

Zone Description Number of Percent of
Occurrences Total

62 6.71XX

2xx

3xx

4xx

5x×

6xx

7xx

8xx

9xx

Forward Fuselage

Mid Fuselage

Aft Fuselage and Body Flap

Vertical Stabilization Control Systems
OMS, SSME, FRCS Modules

Right Wing

Left Wing

Nose Cap, Hatches, and Doors

Landing Gear and Landing Gear Doors

41 4.4

315 34.0

100 10.8

139

115

15.0

12.4

99 10.7

24 2.6

31 3.4
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In addition, corrosion in aft locations is apparently accelerated by occasional exposures to

unusually severe corrosive environments, e.g., the water deluge that follows a launch pad abort.

Although clear fresh water is intended for performing the deluge, verbal testimonials indicate that

some level of contamination is introduced by this procedure. The most recent example of apparent

water deluge effects is the relatively severe corrosion of fasteners and structural panels in the OV-

103 body flap cove detected prior to STS-60 (Problem Report PV6-255792). Corrosion was

reported on most rivets, at the fitting-to-airframe faying surface, and on outboard secondary

structure; the most severe localized attack on the structure extended to a measured depth
representing 28% of the total section thickness. At the time of this report, the water deluge issue is

under study for specific details concerning the history of recent processing flows, in order to

establish the connection to water deluge effects.

Although the aft areas are coated with corrosion-resistant Koropon primer (and in the case of the
RSB, with an additional polyurethane topcoat), the organic coatings slowly deteriorate with time

and eventually become ineffective in their ability to resist corrosion. Degradation of the standard

Koropon/polyurethane coating system over a 4 to 6 year period has been cited in the engineering

literature [3]. This time interval has been substantiated for the RSB, as evidenced by the increase

in the number of PRs as the vehicle ages.

9.1 Materials

Aluminum 2xxx-series alloys account for the overwhelming majority of structural corrosion

problems. The alloys are present in the form of rivets, monolithic panels, and thin (less than 0.020
in. thick) facesheet honeycomb. A notable exception to the corrosion problems associated with

these materials is the high incidence of issues associated with the SSME dome heat shields, which

are fabricated from 17-7 PH stainless steel (143 occurrences representing 15% of all corrosion

database entries).

9.2 Mechanisms

Corrosion of structural elements is attributed to atmospheric corrosion mechanisms which can

operate during any portion of the ground cycle (refer to section 2. la), but are most active when the
orbiter resides on the launch pad. This period is typically on the order of 30 days, but schedule

delays have caused extensions of this period up to 115 days. Under normal ambient atmospheric

conditions and in the presence of moisture, corrosion of exposed surfaces occurs in the presence of

oxygen, which provides the coupling cathodic reaction for active, anodic corrosion. In addition,

when oxygen is present, faying surfaces are susceptible to crevice corrosion. The salt air
environment encountered at the KSC launch facilities serves to further enhance the conditions for

corrosion, especially pitting phenomena. As discussed in section 5.2, the degradation of primer

integrity is an important factor in predisposing structure to high corrosion rates under these
conditions.

For certain configurations of structure, galvanic corrosion conditions are superimposed on

atmospheric effects and most likely represent the predominant, rate-determining corrosion
mechanism. Under conditions of galvanic corrosion, the cathodic counter-reaction typically occurs

at a second metal which is dissimilar to the corroding anode. Furthermore, there is a marked

dependence upon the relative anode/cathode area ratio, as illustrated in figure 10 [4]. Small area
ratios result in accelerated galvanic attack on the anode. Most orbiter structure problems with

galvanic corrosion and small anode/cathode area ratios typically occur in situations where

aluminum rivets are located adjacent to stainless steel or Inconel fittings, although corrosion of the
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wing leading edge spar is attributed to galvanic coupling of the aluminum structure to the Inconel
thermal insulators.

9.3 Mitigation System

The long-term goal of the CCRB is to facilitate the evolution of the existing maintenance

framework into a more comprehensive corrosion prevention and control program. Such a program

should translate past operational experiences into an integrated network of practical inspection

strategies, consistent rework procedures, timely engineering involvement, and the utilization of

new corrosion prevention technologies.

Basic requirements for inspection and maintenance of orbiter structural corrosion-related problems

are found in OMRS V30 and V31 documents, and operations efforts have been performed in full
compliance with these requirements. Given the original design lifetime of 10 years, the current

maintenance program would likely be adequate to maintain structural integrity of the vehicle.

STAINLESS STEEL RIVET

ALL CATHODE)

._" J JL, "_ ALUMINUM SHEET

RELATIVELY LITTLE _'_ J_"

c
HEAVY _ _'/

CORROSIVE "_]

ATTACK _

f I _ ALUMINUM RIVET

STAINLESS STEEL SHEET
(LARGE CATHODE)

Figure 10. Effect of area relationship in dissimilar metal contacts (from [4]).
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However,theanticipatedextensionsof orbiterlife, thepersistenceof certainstructuralcorrosion
issues,andthelackof structuralspareshavenecessitatedanongoingreviewof themaintenance
process.

An outgrowthissueof theabovediscussionis thatthereis nosingle,comprehensivereference
sourceof reworklimits for orbiterstructure.This informationis commonplacein bothmilitary and
civilian aerospaceindustries,andisnecessaryfor reworkprocedures,suchascleaningand
blendouts,to be implementedefficiently andsafely.At present,theeffectsof reworkonstress
marginsmustbeevaluatedonanindividualbasis,whichgreatlyextendsthetimespanrequiredto
completetheseprocedures.Blendoutlimits serveagatekeepingfunctionby definingacceptable
maximumdepthsof reworkfor anygivensinglereworkoperation.In addition,theyallow the
accurateevaluationof corrosionseverityfor agivenstructure,asdeterminedby therateatwhich
blendoutlimits areapproachedby asuccessionof reworkoperations.TheCCRBhasaddressed
thisproblemonaninformallevelwith theengineeringcommunity,andiscontinuingitsattemptsto
obtainasatisfactoryresolution.

Corrosionprotectionstrategiesendorsedby theCCRBin 1993focusedoncorrosionprevention
andcontrolmethodologieswhichapplycurrentlyapprovedorbitermaterialsandprocesses.This
approachwasusedin orderto avoidlargematerialsqualificationeffortsand,therefore,maximize
thecostbenefitof corrosionprotectionstrategies.

RTV hasbeenusedin severalreworkapplicationsinvolvinggalvaniccorrosionof fayingsurfaces,
andapprovedlubricantshavebeenrecommendedfor useaswater-displacingagentsin certain
interimdispositions.In addition,regularwashingof theRSBwithanapprovedalkalinedetergent
hasbeenimplementedin orderto reducetheincidenceof corrosionon thisstructure;thisprocedure
is structuredafterthemilitary policyonaircraftwashing[4]. Becauseof therelativelyhigh
incidenceof RSBcorrosionandcoatingdegradation,asdiscussedearlier,thereisadevelopment
effort in work to periodicallystripandrepainttheRSB.

At present,theuseof approvedorbitermaterialsisat ornearthelimit of theircollective
applicabilityto corrosionprevention.Althoughthecorrectiveactionsimplementedto date
representimprovementsrelativeto previousefforts,concernspersistovercontinuedcorrosionof
susceptiblestructuresuchastheRSBandbodyflapcove,thepossibilityof exceedingfinite
reworklimits, andtheadditionalissueof physicalinaccessibilityof certainstructures.In such
areas,additionalcorrosionprotectionrequiresthedevelopmentandqualificationof newcorrosion
protectiontechnologies,suchascorrosionpreventivecompoundsandadvancedcoatings.The
potentialuseof newcorrosiontechnologiesonorbiterstructurewill beaddressedafuturereport.

10.0 Summary

Corrosion of the orbiter fleet to date, particularly orbiter structure, has been relatively benign.

Although it may be reasoned that any corrosion is cause for concern, no corrosion problem has
ever caused such a disastrous event as a launch delay, in-flight failure, or safety hazard. The most

serious problems have generally been associated with nonstructural subsystems such as the

hydrogen separator and the flash evaporator.

Corrosion protection systems on susceptible surfaces have performed remarkably well.

Breakdowns generally have occurred where exposure has been greater than expected, typically due

to extended pad stays. Surface coatings do wear out, however, and the CCRB has initiated the

reapplication of Koropon primer and paint on some structure.
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The potential for undetected corrosion has generated significant concern from time to time. Other

than skin under TPS and sealed structure, honeycomb structure presents the most challenging

corrosion inspection problem. Two instances of corrosion in aluminum honeycomb have occurred
due to a lack of adequate drainage. Both of these instances were traced to errors during

manufacturing and/or previous repair. The CCRB has undertaken the responsibility for actively

searching for structure that cannot easily be inspected and is studying these areas for corrosion

potential.

Although the number of corrosion reports may be expected to increase as the orbiter fleet ages,

there is no reason to believe that the relative significance of corrosion issues, particularly structural

corrosion issues, will change. However, a continuous "total vehicle" approach to corrosion

should be maintained. The CCRB will retain the initiative for identifying future corrosion

problems and will become more aggressive concerning corrosion prevention.
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